Degree of surface roughness of three restorative materials in pediatric dentistry subjected to thermocycling: in vitro study

Main Article Content

Gabriela Alejandra Vaca Rodríguez
Marina Alejandra Cabrera Arias
Ricardo Iván García Merino

Abstract

Objective: To assess in vitro the surface roughness of a resin modified glass ionomer (RMGI), nanohybrid resin and a bioactive composite using a roughness tester before and after the accelerated aging process by thermocycling. Materials and methods: in vitro experimental study, 20 test bodies of each biomaterial (Filtek Z250, ACTIVA Bioactive and Fuji II) were made, divided into 6 groups (3 with thermocycling - 3 without thermocycling), they were stored in distilled water at 37 ºC for 24 hours. Half of the samples from each group were subjected to thermocycling until completing 10,000 cycles at 5º C and 55º C to simulate aging in the oral cavity for one year, all samples underwent a roughness analysis with a roughness tester in four positions. Statistical analysis was performed using Stata-14 software. For comparison between the three groups, an ANOVA test was used for parametric values ​​and a Kruskal-Wallis test for non-parametric values. For individual comparisons between the groups, a Student t-test was used for parametric values ​​and a Mann-Whitney U test for non-parametric values. Results: before thermocycling, the resin had an average value of 0.49 µm, the bioactive composite 0.36 µm and the RMGI 0.49 µm. After thermocycling, the resin had an average value of 0.44 µm, the bioactive composite 0.34 µm and the RMGI 0.36 µm. Conclusion: the three restorative materials showed no statistical differences before and after thermocycling, showing a similar degree of roughness and clinically acceptable at 10,000 cycles.

Downloads

Download data is not yet available.

Article Details

How to Cite
Vaca Rodríguez, G. A., Cabrera Arias, M. A., & García Merino, R. I. (2024). Degree of surface roughness of three restorative materials in pediatric dentistry subjected to thermocycling: in vitro study. Revista Ecuatoriana De Pediatría, 25(1), 4-11. https://doi.org/10.52011/RevSepEc/e259
Section
Original Articles
Author Biographies

Gabriela Alejandra Vaca Rodríguez, Universidad Central del Ecuador

Facultad de Odontología de la Universidad Central del Ecuador; Quito, Ecuador

Marina Alejandra Cabrera Arias, Universidad Central del Ecuador

Facultad de Odontología de la Universidad Central del Ecuador; Quito, Ecuador.

Ricardo Iván García Merino, Universidad Central del Ecuador

Facultad de Odontología de la Universidad Central del Ecuador; Quito, Ecuador

References

Orsini G, Tosco V, Monterubbianesi R, Orilisi G, Putignano A. A New Era in Restorative Dentistry. En 2020. p. 319-34.

Lardani L, Derchi G, Marchio V, Carli E. One-Year Clinical Performance of ActivaTM Bioactive-Restorative Composite in Primary Molars. Children (Basel). 19 de marzo de 2022;9(3):433.

Sánchez BIA, Vera OLR, Huamán BPA. Importancia de dientes deciduos en la erupción de dientes permanentes: percepción de los padres de familia en un centro poblado de lambayeque. Salud & Vida Sipanense. 16 de junio de 2022;9(1):94-106.

Essa M, Nassar A, Attia R. One-year comparative clinical evaluation of ACTIVA Bioactive restorative material with Nano hybrid composite resin in class V cavity preparation. Egyptian Dental Journal. 1 de abril de 2022;68(2):1875-88.

Amaireh AI, Al-Jundi SH, Alshraideh HA. In vitro evaluation of microleakage in primary teeth restored with three adhesive materials: ACTIVATM, composite resin, and resin-modified glass ionomer. Eur Arch Paediatr Dent. agosto de 2019;20(4):359-67.

pulpdentcorp. ACTIVATM BioACTIVE - RESTORATIVETM [Internet]. PULPDENT. [citado 10 de julio de 2022]. Disponible en: https://pulpdent.es/pulpdent-products/activa-bioactive-restorative-es/

Valian A, Ansari ZJ, Rezaie MM, Askian R. Composite surface roughness and color change following airflow usage. BMC Oral Health. diciembre de 2021;21(1):398.

Omidi BR, Naeini FF, Dehghan H, Tamiz P, Savadroodbari MM, Jabbarian R. Microleakage of an Enhanced Resin-Modified Glass Ionomer Restorative Material in Primary Molars. J Dent (Tehran). julio de 2018;15(4):205-13.

Rodrigues DS, Buciumeanu M, Martinelli AE, Nascimento RM, Henriques B, Silva FS, et al. Mechanical Strength and Wear of Dental Glass-Ionomer and Resin Composites Affected by Porosity and Chemical Composition. J Bio Tribo Corros. septiembre de 2015;1(3):24.

Al-Sheikh R. Effects of Different Application Techniques on Nanohybrid Composite Restorations Clinical Success. The Open Dentistry Journal [Internet]. 31 de julio de 2019 [citado 29 de junio de 2022];13(1). Disponible en: https://opendentistryjournal.com/VOLUME/13/PAGE/228/FULLTEXT/

Jones CS, Billington RW, Pearson GJ. The in vivo perception of roughness of restorations. Br Dent J. 10 de enero de 2004;196(1):42-5; discussion 31.

Vichi A, Fonzar RF, Goracci C, Carrabba M, Ferrari M. Effect of Finishing and Polishing on Roughness and Gloss of Lithium Disilicate and Lithium Silicate Zirconia Reinforced Glass Ceramic for CAD/CAM Systems. Operative Dentistry. 1 de enero de 2018;43(1):90-100.

Bala O, Arisu HD, Yikilgan I, Arslan S, Gullu A. Evaluation of surface roughness and hardness of different glass ionomer cements. European Journal of Dentistry. enero de 2012;6(1):79.

Yuan JCC, Barão VAR, Wee AG, Alfaro MF, Afshari FS, Sukotjo C. Effect of brushing and thermocycling on the shade and surface roughness of CAD-CAM ceramic restorations. The Journal of Prosthetic Dentistry. junio de 2018;119(6):1000-6.

Gajewski VES, Pfeifer CS, Fróes-Salgado NRG, Boaro LCC, Braga RR. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J. octubre de 2012;23:508-14.

El-Rashidy AA, Shaalan O, Abdelraouf RM, Habib NA. Effect of immersion and thermocycling in different beverages on the surface roughness of single- and multi-shade resin composites. BMC Oral Health. 7 de junio de 2023;23(1):367.

Dos Santos PH, Catelan A, Albuquerque Guedes AP, Umeda Suzuki TY, de Lima Godas AG, Fraga Briso AL, et al. Effect of thermocycling on roughness of nanofill, microfill and microhybrid composites. Acta Odontol Scand. abril de 2015;73(3):176-81.

Pratheebha C, S BG, Jayalakshmi, Sasidharan. Effect Of Thermocycling On Surface Roughness Of Two Different Commercially Available Glass Ionomer Cements - An In Vitro Study. IJDOS. 24 de septiembre de 2021;4670-5.

Łępicka M, Niewczas AM, Rodziewicz MU, Pikuła K, Kordos P, Gredes T, et al. The influence of hydrothermal fatigue on the clinically relevant functional properties of conventional glass-ionomer cements. Sci Rep. 30 de mayo de 2023;13(1):8738.

Kazak M, Koymen S, Yurdan R, Tekdemir K, Dönmez N. Effect of thermal aging procedure on the microhardness and surface roughness of fluoride ion containing materials. Annals of Medical Research. 1 de enero de 2020;27:888.

Minami H, Hori S, Kurashige H, Murahara S, Muraguchi K, Minesaki Y, et al. Effects of Thermal Cycling on Surface Texture of Restorative Composite Materials. Dent Mater J. 2007;26(3):316-22.