Photopolymerizable resin for 3D printers, heat-curing PMMA-based resins, post-polymerization chamber, surface roughness, polishing

Main Article Content

Karen Mireya Taimal Valencia
Pablo Ruben Garrido Villavicencio

Abstract

Surface roughness plays a crucial role in evaluating dental materials as it influences their durability. The objective of this study was to assess the surface roughness of light-curable resins for 3D printers and PMMA-based resins. Methodology: A total of 20 samples measuring 25×25×3 mm were prepared and divided into two groups: Group A (n=10), consisting of light-curable resins for 3D printers, and Group B (n=10), composed of heat-cured PMMA-based resins. Samples in Group A were designed using Meshmixer software and arranged in Photon Workshop 6.4 DLP 3D with a 0° orientation. Printing was performed using a Photon Ultra DLP printer (Anycubic, Hong Kong-China). The samples were then washed with 90% isopropyl alcohol for 5 minutes. For post-curing, a custom-designed curing chamber from the faculty project was used, applying a power of 45 watts and a wavelength of 400 to 470 nm for 16 minutes. Group B samples were created from self-curing acrylic impressions using condensation silicone keys and were placed in flasks for PMMA sample production following the manufacturer’s instructions. The sample surfaces were polished using a low-speed handpiece operating between 1500 and 2000 rpm. Data were recorded in an Excel spreadsheet (Microsoft-USA) and analyzed using the BioStat 5.3 statistical software (Brazil) through a Student’s t-test (p < 0.05). Results: The obtained values were ≤ 0.2 μm, with no statistically significant differences between both groups (p > 0.05). Conclusion: The results of this study highlight that both materials are entirely acceptable for use in dentistry. Further research is recommended to evaluate surface roughness in greater depth.

Downloads

Download data is not yet available.

Article Details

How to Cite
Taimal Valencia, K. M., & Garrido Villavicencio, P. R. (2025). Photopolymerizable resin for 3D printers, heat-curing PMMA-based resins, post-polymerization chamber, surface roughness, polishing. Revista Ecuatoriana De Pediatría, 26(1), 4-18. https://doi.org/10.52011/RevSepEc/e321
Section
Original Articles
Author Biographies

Karen Mireya Taimal Valencia, Universidad Central del Ecuador

Universidad Central del Ecuador; Quito, Ecuador

Pablo Ruben Garrido Villavicencio, Universidad Central del Ecuador

Universidad Central del Ecuador; Quito, Ecuador

References

López G. Rugosidad superficial de resinas Bulk Fill frente a la acción de dos tipos de enjuagues bucales”. Estudio in vitro [Internet]. [Quito]: Universidad Central del Ecuador; 2019. Disponible en: https://www.dspace.uce.edu.ec/server/api/core/bitstreams/654e440e-f562-4bdc-96eb-a6334a240afd/content

Salgado H, Gomes A, Duarte A, Ferreira J, Fernandes C, Figueiral M, et al. Antimicrobial Activity of a 3D-Printed Polymethylmethacrylate Dental Resin Enhanced with Graphene. Biomedicines [Internet]. 10(2607). Disponible en: https://www.mdpi.com/2227-9059/10/10/2607

Roig M, Gagliani M. Introducción a la odontología digital. Grupo Asís Biomedia S.L.; 2021. 300 p.

Namano S, Kanazawa M, Katheng A, Trang BNH, Hada T, Komagamine Y, et al. Effect of support structures on the trueness and precision of 3D printing dentures: An in vitro study. J Prosthodont Res. 2024;68(1):114-21.

Díez-Pascual AM. PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art. Int J Mol Sci. 7 de septiembre de 2022;23(18):10288.

Ertugrul M, Bakir S, Ozcan N. An evaluation of the effect on streptococcus mutans adhesion of surface roughness in different aesthetic restorative materials. Cumhuriyet Dental Journal. 27(4).

Karina Briseño Medrano. ANALISIS DEL USO ODONTOLÓGICO DEL PMMA COMBINADO CON GRAFENO PARA LA ELABORACIÓN DE PRÓTESIS TOTALES. [Internet]. [MÉXICO, Cd. Mx.]: Universidad Nacional Autónoma de México.; Disponible en: https://ru.dgb.unam.mx/bitstream/20.500.14330/TES01000839958/3/0839958.pdf

Chiayi Shen, H., Ralph Rawls, Josephine F., Esquivel-Upshaw. Phillips CIENCIAS de los MATERIALES DENTALES [Internet]. 13.a ed. Avda. Tarradellas, Barcelona España: ELSEVIER; Disponible en: https://books.google.com.ec/books?id=ktFvEAAAQBAJ&pg=PA236&dq=fase+arenosa+del+pmma+en+odontologia&hl=es&newbks=1&newbks_redir=1&sa=X&ved=2ahUKEwiDh-_Qt5qHAxWdTDABHRe4BvsQ6wF6BAgBEAE

José Luis Cova N. BIOMATERIALES DENTALES [Internet]. Primera. AMOLCA; Disponible en: https://uceedu-my.sharepoint.com/personal/jdelvalle_uce_edu_ec/Documents/Libros/Libros%20Materiales%20Dentales/Biomateriales%20Dentales%20-%20Cova.pdf

DAIANE PEREIRA CAMACHO, TEREZINHA INEZ ESTIVALET SVIDZINSK, MÁRCIA CRISTINA FURLANETO, MURILO BAENA LOPES, GIOVANI DE OLIVEIRA CORRÊA. RESINAS ACRÍLICAS DE USO ODONTOLÓGICOÀ BASE DE POLIMETILMETACRILATO. BJSCR. 6(3):63-72.

HUGE DENTAL MATERIAL CO., LTD. Ficha de Datos de Seguridad [Internet]. Disponible en: https://d3tfk74ciyjzum.cloudfront.net/proclinic-es/annexes/h53545msds_es_.pdf

Federico Humberto Barceló Santana, Jorge Mario Palma Calero. MATERIALES DENTALES CONOCIMIENTOS BÁSICOS APLICADOS [Internet]. 3a ed. MÉXICO: TRILLAS; 227-230 p. Disponible en: https://es.scribd.com/document/358300515/Materiales-Dentales-Barcelo-PDF

Bertana V, De Pasquale G, Ferrero S, Scaltrito L, Catania F, Nicosia C, et al. 3D Printing with the Commercial UV-Curable Standard Blend Resin: Optimized Process Parameters towards the Fabrication of Tiny Functional Parts. Polymers. febrero de 2019;11(2):292.

Lee EH, Ahn JS, Lim YJ, Kwon HB, Kim MJ. Effect of post-curing time on the color stability and related properties of a tooth-colored 3D-printed resin material. J Mech Behav Biomed Mater. 1 de febrero de 2022;126:104993.

Li P, Lambart AL, Stawarczyk B, Reymus M, Spintzyk S. Postpolymerization of a 3D-printed denture base polymer: Impact of post-curing methods on surface characteristics, flexural strength, and cytotoxicity. J Dent. diciembre de 2021;115:103856.

Bayarsaikhan E, Gu H, Hwangbo NK, Lim JH, Shim JS, Lee KW, et al. Influence of different postcuring parameters on mechanical properties and biocompatibility of 3D printed crown and bridge resin for temporary restorations. J Mech Behav Biomed Mater. abril de 2022;128:105127.

Chen H, Hou JP, Lee SY, Lin YM. Effects of postpolymerization time and temperature on the flexural properties and hardness profile of three-dimensional printed provisional resin. J Dent Sci. enero de 2024;19(1):455-60.

Billings C, Siddique R, Liu Y. Photocurable Polymer-Based 3D Printing: Advanced Flexible Strain Sensors for Human Kinematics Monitoring. Polymers (Basel). 20 de octubre de 2023;15(20):4170.

Singh R, Gupta A, Tripathi O, Srivastava S, Singh B, Awasthi A, et al. Powder bed fusion process in additive manufacturing: An overview. Materials Today: Proceedings. 2020;26:3058-70.

Ochoa JP. New Stetic S.A. 2024 [citado 12 de julio de 2024]. IMPRESIÓN 3D DENTAL: TRANSFORMANDO LA ODONTOLOGÍA MODERNA. Disponible en: https://www.newstetic.com/articulos/impresion-3d-dental-transformando-la-odontologia-moderna/

Pérez Sevilla M, Rivas Navazo F, Sánchez Ortega PL. Manual de Impresión 3D Resina. 2024 [citado 12 de julio de 2024]; Disponible en: https://riubu.ubu.es/handle/10259/9171

Tian Y, Chen C, Xu X, Wang J, Hou X, Li K, et al. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning. 17 de julio de 2021;2021:9950131.

Kim GT, Go HB, Yu JH, Yang SY, Kim KM, Choi SH, et al. Cytotoxicity, Colour Stability and Dimensional Accuracy of 3D Printing Resin with Three Different Photoinitiators. Polymers. 2022;14(5):undefined-undefined.

Toaza Paucar, Adriana Elizabeth. “RUGOSIDAD SUPERFICIAL DE RESINAS COMPUESTAS MEDIANTE SISTEMAS DE PULIDO” [Internet]. [Riobamba]: Universidad Nacional de Chimborazo; 2023. Disponible en: http://dspace.unach.edu.ec/bitstream/51000/11178/1/Toaza%20Paucar%2C%20A%282023%29Rugosidad%20superficial%20de%20resinas%20compuestas%20mediante%20sistemas%20de%20Pulido%28Tesis%20de%20Pregrado%29%20Universidad%20Nacional%20de%20Chimborazo%2C%20Riobamba%2C%20Ecuador.pdf

Urresta García Diego Ricardo. Rugosidad superficial de ionómero de vidrio convencional adicionado con teobromina cristalina al 1%. Estudio in vitro. [Internet]. [Quito]: Universidad Central del Ecuador; 2020. Disponible en: https://www.dspace.uce.edu.ec/server/api/core/bitstreams/15650558-a96b-46ac-9744-e08e1a7f6570/content

Al-Dwairi ZN, Tahboub KY, Baba NZ, Goodacre CJ, Özcan M. A Comparison of the Surface Properties of CAD/CAM and Conventional Polymethylmethacrylate (PMMA). J Prosthodont. abril de 2019;28(4):452-7.

Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. julio de 1997;13(4):258-69.

Aydın N, Topçu FT, Karaoğlanoğlu S, Oktay EA, Erdemir U. Effect of finishing and polishing systems on the surface roughness and color change of composite resins. J Clin Exp Dent. mayo de 2021;13(5):e446-54.

Postiglione G. Smart Materials and Additive Manufacturing [Internet]. Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; 2017. Disponible en: file:///C:/Users/home/Downloads/2017_03_PhD_Postiglione.pdf

Careño A, Torres M, Ramírez M, Núñez J. A comparative Study to Evaluate the Subtractive and Additive Process in Dentistry: A Systematic Review. Ingenierías USBmed [Internet]. 15(1). Disponible en: file:///C:/Users/home/Downloads/Dialnet-UnEstudioComparativoParaEvaluarElProcesoSustractiv-9574340.pdf

Quezada M, Gomes C, Martín J, Correia A, Fonseca P. Influence of different processing techniques for prosthetic acrylic resins in the surface roughness parameters: a research article. BMC Oral Health [Internet]. Disponible en: https://pubmed.ncbi.nlm.nih.gov/38816807/

Jung YH, Kong HJ, Kim YL. Effect of fabrication method and surface polishing on the surface roughness and microbial adhesion of provisional restoration. J Dent Rehabil Appl Sci. 40(3):149-58.

Vichi A, Mura G, Vannini F, Baldani S, Paolone G, Goracci C. Effects of Repolishing Systems on Surface Characteristics of a 3D-Printed Permanent Material. Appl Sci [Internet]. 15(171). Disponible en: https://www.mdpi.com/2076-3417/15/1/171

Unkovsky A, Fernandez P, Benkendorff V, Klink A, Spintzyk S. Surface Characteristics of Milled and 3D Printed Denture Base Materials Following Polishing and Coating: An In-Vitro Study. MDPI [Internet]. 13. Disponible en: file:///C:/Users/USER-PC/Downloads/materials-13-03305.pdf

Meneghello R, Di Fiore A, Brun P, Rosso S, Gattazzo A, Stellini E, et al. Comparison of the flexural and surface properties of milled, 3D-printed, and heat polymerized PMMA resins for denture bases: An in vitro study. J Prosthodont Res. 66(3):502-8.